

Welcome to pylleo’s documentation!

Contents:

	Guide
	Installation

	Loading data

	Calibration

	Interpolation of sensor data

	Calibration
	Accelerometer

	Propeller

	Building the documentation
	napoleon

	Compiling

	Pylleo API documentaiton
	lleoio

	lleocal

Indices and tables

	Index

	Module Index

	Search Page

Guide

Installation

pylleo is written in Python 3.5 and does not currently support prior
versions. It is available from the PyPi repository and can be installed using
pip:

pip3 install pylleo

It is preferable to use a Python virtual environment, particularly to avoid any
problems if you are have multiple Python versions installed.

cd <project path>
virtualenv --python=python3 venv
source venv/bin/activate
pip install pylleo

If you have installed pylleo using a virtual environment, be sure to activate
that environment before running the pylleo-cal script described in the
Calibration documentation.

Loading data

The data must first be downloaded from the datalogger using the Little Leonardo
software. pylleo uses the filename for loading the data, so care should be
taken to name the files correctly (shown below). While pylleo will
automatically try to identiy for the timestamp format used, it is recommended
that you follow the ISO 8601 date format without underscores, i.e.
YYYYMMDD.

<date>_<tag model>_<tag serial>_<animal_name>_<modification>_suffix.TXT

Below is an example of how the contents of a Little Leonardo data directory
should look:

./20160418_W190PD3GT_34840_Skinny_2Neutral
├── 20160418_W190PD3GT_34840_Skinny_2Neutral-Acceleration-X.TXT
├── 20160418_W190PD3GT_34840_Skinny_2Neutral-Acceleration-Y.TXT
├── 20160418_W190PD3GT_34840_Skinny_2Neutral-Acceleration-Z.TXT
├── 20160418_W190PD3GT_34840_Skinny_2Neutral-Depth.TXT
├── 20160418_W190PD3GT_34840_Skinny_2Neutral-Propeller.TXT
└── 20160418_W190PD3GT_34840_Skinny_2Neutral-Temperature.TXT

The code can then be loaded to a pandas dataframe, by first creating a
meta-data dictionary (saved as a YAML format file to the data directory), and
then loading the data using the created meta-data.

import pylleo

path_dir = './'
meta = pylleo.lleoio.read_meta(path_dir, 'W190PD3GT', 34840)
data = pylleo.lleoio.read_data(meta, path_dir)

Calibration

The acclerometer and propeller data must be calibrated before being used for
analysis. The sections below provide information on how to apply these
calibrations. For instructions on how to a calibration file (i.e. cal.yml)
or the propeller calibration .csv file, please see the Calibration
documentation.

Calibrating accelerometer data

The calibration file cal.yml created during the calibration process is first
loaded, and then the coefficents for the fit of the calibration data for each
axis is applied to that axis data in the loaded dataframe.

from pylleo import lleocal

Load calibrate data
cal_dict = yamlord.read_yaml('cal.yml')

Apply calibration to accelerometer axes and
save as new columns to the dataframe
data = lleocal.calibrate_acc(data, cal_dict, col_name)

Calibrating propeller data

cal_fname = './speed_calibrations.csv'

Calibrate propeller measurements to speed m s^-2
data = calibrate_propeller(data_df, cal_fname)

Interpolation of sensor data

The data of sensors that sample at a lower frequency than another sensor (e.g.
the accelerometer) can be interpolated using the pandas.DataFrame class
method interpolate [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.interpolate.html]
as shown below.

data.interpolate('linear', inplace=True)

Calibration

Note

Currently only tag model W190PD3GT is covered, but other tags will be
added as opportunity permits.

Accelerometer

Note

The calibration procedure described below needs review (particularly
the orientation of the sensor for the associated gravitational
forces). This will be updated to be a thorough explanation in
subsequent releases of the documentation.

The data provided by the Little Leonardo dataloggers are presented in a raw
format which need to be adjusted to units of gravity (g). Within a period
of approximately one month adjacent to collection of data, a calibration file
should be created using the process described below.

Collecting calibration data

First configure and activate the datalogger for recording. For a period of
approximately 10 seconds orient the tag in each of the following
orientations, one axis at a time. Longer durations make visually identifying
these periods in the data easier.

	
	+g orientation

	-g orientation

	X

	[image: _images/t1.png]

	[image: _images/t2.png]

	Y

	[image: _images/t3.png]

	[image: _images/t4.png]

	Z

	[image: _images/s1.png]

	[image: _images/s2.png]

Running the calibration software

Calibration is performed on accelerometer sensor data that does not have
accompanying magnetometer or gyroscope data by performing by making a linear
fit between a collection of points occurring at -g and +g orientations
of an axis. This fit can then be applied to the original accelerometer count
data to transform the data into units of g.

Launching the application

An application for simplifying the calibration process (made with the bokeh [http://bokeh.pydata.org/en/latest/] visualization library) has been included
with pylleo as an executable script, which launches a bokeh application in
your web-browser.

The script is automatically installed with pylleo, just run it from the
command-line with an option for specifying how it opens in your browser:

Usage: pylleo-cal [OPTIONS]

 Calibrate accelerometer data

Options:
 --new TEXT Method to open application in browser. "tab" opens the
 application in a new browser, and "window" opens it in a new
 browser window.
 --help Show this message and exit.

The following page should appear in your browser, and the application will shut
itself down when you close this page:

[image: _images/screen_start.png]
By zooming into segments of data when the datalogger was at one of the two
orientations described above, a selection tool can be used to select those data
points to be used for calibration. The start and stop index positions for each
of these segments are saved to a file in the data directory cal.yml, and
once all indices have been saved the fit coefficients can be calculated and
saved to the same file. These coefficients can later be used for applying the
fit to the data points using the routine lleocal.calibrate_accelerometer().

The tools for zooming and selecting the data are in the top right
hand corner of the page. A summary table of the tools used in the app
(shown below) have been taken from the Bokeh documentation for plot
tools [http://bokeh.pydata.org/en/latest/docs/user_guide/tools.html#configuring-plot-tools].

	Icon

	Bokeh documentation description

	[image: pan]

	The pan tool allows the user to pan the plot by left dragging
the mouse or dragging a finger across the plot region.

	[image: boxz]

	The box zoom tool allows the user to define a rectangular region
to zoom the plot bounds too, by left-dragging a mouse, or
dragging a finger across the plot area.

	[image: boxs]

	The box selection tool allows the user to define a rectangular
selection region by left-dragging a mouse, or dragging a finger
across the plot area.

	[image: wheel]

	The wheel zoom tool will zoom the plot in and out, centered on
the current mouse location. It will respect any min and max
value ranges preventing zooming in and out beyond these.

	[image: hover]

	The hover tool is a passive inspector tool. It is generally on
at all times, but can be configured in the inspectors menu
associated with the toolbar.

Loading data

All of your data should be organized in their own directories within one
“parent” directory. Copy-paste the full path to this parent directory to the
text input field labeled “Parent directory”.

[image: _images/input_parent.png]
The drop-down list labeled “Data directories” will then propagate with a list
of the directories in your parent directory. The data from the first directory
in the list will be loaded into the plot. To select a different directory,
select it from the list and its data will be loaded.

[image: _images/select_datadirs.png]

Selecting data

The app first loads all three axes of acceleration data, which from time to
time may be helpful to view at the same time for comparing differences between
the axes in +g/-g orientations. When selecting the index positions for the
start and end of the calibration orientation regions, it is usually easiest to
have only one axis displayed at a time.

To start with the x-axis, de-select the y and z axes under the text “Axes to
Display” by clicking on the buttons with their respective labels:

[image: _images/button_axes.png]
Make sure the data parameter (i.e. accelerometer axis) you wish to select
calibration indices for is selected:

[image: _images/select_parameter.png]
And the “bound” (i.e. the +g or -g position for that axis):

[image: _images/select_bound.png]
Assuming the calibration sequence was performed before the deployment of the
datalogger, zoom this region of data using the [image: boxz] tool:

[image: _images/zoom_box-region.png]
If the calibration sequence of orienting the datalogger was performed
correctly, it should be obvious to see where the +g/-g positions are in the
data:

[image: _images/plot_hilo.png]
Zoom in again to the region corresponding with the bound you are selecting
indices for, “lower” or “upper”:

[image: _images/zoom_box-bound.png]
Then using the [image: boxs] tool, click and drag across a section of data without
large amounts of variation.

[image: _images/select_box-bound.png]
Notice that the start and end index position values have updated to the
positions of the start and end of the horizontal area selected:

[image: _images/input_indices.png]

Saving the index values

Once you have start and end index values for the region you are working
with (e.g. accelerometer_x/lower), Click the button labeled “Save Index
Values”:

[image: _images/button_indices.png]
You should then see a message displayed in the gray box to the right of the
selection menu letting you know that the index positions for that region saved
correctly to the cal.yml. This message includes the data parameter and bound
you have selected and the start and end index positions you have selected:

[image: _images/terminal_update-success.png]
Once completed, you can zoom out again using the [image: wheel] tool to perform these
steps on the “upper” region. Be sure to select the correct data parameter and
bound before saving the next index positions.

Then repeat these steps for the x and y axes until you have saved the index
positions for all calibration orientation regions:

	acceleration_x/lower

	acceleration_x/upper

	acceleration_y/lower

	acceleration_y/upper

	acceleration_z/lower

	acceleration_z/upper

Saving the polyfit coefficients

Once you have saved all of the index positions for all calibration orientation
regions, click the button labeled “Perform Polyfit”:

[image: _images/button_poly.png]
If the coefficients were able to successfully save to the cal.yml file, you
should get a message in the gray box as follows:

[image: _images/terminal_poly-success.png]
If you are missing any index positions, you will get a message indicating the
first of the missing regions you must select and save before you can perform
the polyfit:

[image: _images/terminal_poly-error.png]

Propeller

Collecting calibration data

First configure and activate the datalogger for recording. You must then move
water over the datalogger’s propeller at known speeds, logging the speed of
water movement, the exact start, and exact end times in spreadsheet with a
preceding id column, saving it as a csv file as shown below.

As with the accelerometer file, a calibration of the propeller sensor should be
performed within approximately 1 month of each deployment of the datalogger.

id,start,end,est_speed,count_average
00,start,end,speed,
...
99,start,end,speed,

Running the calibration software

With the collected data loaded using pylleo. Find the timestamp in
data[‘datetimes’] closest to the logged start and end times, then calculate
the average count the propeller turned between each sample.

from pylleo import lleocal

cal_fname = 'speed_calibrations.csv'

cal = lleocal.create_speed_csv(cal_fname, data)
data = lleocal.calibrate_propeller(data, cal_fname)

Building the documentation

napoleon

The source code is documented using the Numpy documentation style, which
requires the extension napoleon for sphinx to correctly parse documentation
from the source code docstrings.

Install napoleon:

pip install spinxcontrib-napoleon

See the end of the conf.py file to see the napoleon options for compiling.

Compiling

Then you can build the documentation using the sphinx Makfile by running the
following in pylleo’s installation directory location:

make html

Pylleo API documentaiton

	lleoio

	lleocal

lleoio

	
pylleo.lleoio.read_data(meta, path_dir, sample_f=1, decimate=False, overwrite=False)

	Read accelerometry data from leonardo txt files

	Parameters

	
	meta (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of meta data from header lines of lleo data files

	path_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Parent directory containing lleo data files

	sample_f (int [https://docs.python.org/3/library/functions.html#int]) – Return every sample_f data points

	Returns

	
	acc (pandas.DataFrame) – Dataframe containing accelerometry data on x, y, z axes [m/s^2]

	depth (pandas.DataFrame) – Dataframe containing depth data [m]

	prop (pandas.DataFrame) – Dataframe containing speed data from propeller

	temp (pandas.DataFrame) – Dataframe containing temperature data

	
pylleo.lleoio.read_meta(path_dir, tag_model, tag_id)

	Read meta data from Little Leonardo data header rows

	Parameters

	
	path_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Parent directory containing lleo data files

	tag_model (str [https://docs.python.org/3/library/stdtypes.html#str]) – Little Leonardo tag model name

	tag_id (str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]) – Little Leonardo tag ID number

	Returns

	meta – dictionary with meta data from header lines of lleo data files

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

lleocal

	
pylleo.lleocal.fit1d(lower, upper)

	Fit acceleration data at lower and upper boundaries of gravity

	Parameters

	
	lower (pandas dataframe) – slice of lleo datafram containing points at -1g calibration position

	upper (pandas dataframe) – slice of lleo datafram containing points at -1g calibration position

	Returns

	p – Polynomial coefficients, highest power first. If y was 2-D, the
coefficients for k-th data set are in p[:,k]. From numpy.polyfit().

	Return type

	ndarray

Note

This method should be compared agaist alternate linalg method, which allows
for 2d for 2d poly, see - http://stackoverflow.com/a/33966967/943773

A = numpy.vstack(lower, upper).transpose()
y = A[:,1]
m, c = numpy.linalg.lstsq(A, y)[0]

	
pylleo.lleocal.get_cal_data(data_df, cal_dict, param)

	Get data along specified axis during calibration intervals

	Parameters

	
	data_df (pandas.DataFrame) – Pandas dataframe with lleo data

	cal_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Calibration dictionary

	Returns

	
	lower (pandas dataframe) – slice of lleo datafram containing points at -1g calibration position

	upper (pandas dataframe) – slice of lleo datafram containing points at -1g calibration position

See also

	lleoio.read_data()

	creates pandas dataframe data_df

	read_cal()

	creates cal_dict and describes fields

	
pylleo.lleocal.read_cal(cal_yaml_path)

	Load calibration file if exists, else create

	Parameters

	cal_yaml_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to calibration YAML file

	Returns

	cal_dict – Key value pairs of calibration meta data

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pylleo.lleocal.update(data_df, cal_dict, param, bound, start, end)

	Update calibration times for give parameter and boundary

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pylleo	

 	
 	
 pylleo.lleocal	

 	
 	
 pylleo.lleoio	

Index

 F
 | G
 | P
 | R
 | U

F

 	
 	fit1d() (in module pylleo.lleocal)

G

 	
 	get_cal_data() (in module pylleo.lleocal)

P

 	
 	pylleo.lleocal (module)

 	
 	pylleo.lleoio (module)

R

 	
 	read_cal() (in module pylleo.lleocal)

 	
 	read_data() (in module pylleo.lleoio)

 	read_meta() (in module pylleo.lleoio)

U

 	
 	update() (in module pylleo.lleocal)

 _images/input_indices.png
Start index:

1230
End index:

9480

_images/input_parent.png
Parent directory:

/path/to/parent/directory

_images/button_indices.png
Save Index Values
A

Perform Polyfit

_images/button_poly.png
Save Index Values

A

_images/s2.png
(00

_images/screen_start.png
Acceleration (count)

©+ O

..

140 150 18h

17

Time (timezone as programmed)

Parent directory:

Data directories:
None :|

Axes to display

vz

Parameter to calibrate:

None :|

Bound (lower = -g; upper = +g):

None :|

Start index:

orm Polyfit

Status updates display here

_images/plot_hilo.png
3000

Acceleration (count)
3y
g 8

H

1000

Calibrating 20160418_W 190PD3GT_34840_Skinny_2Neutral

+g region
) |
g region&‘ I 0

840

020 s:40

Time (timezone as programmed)

1000

10:20

_images/s1.png
ot

_images/select_bound.png
Bound (lower = -g; upper = +g):

_images/select_box-bound.png
1750

B

H

Acceleration (count)
g g

1500

1450

Calibrating 20160418_W190PD3GT_34840_Skinny_2Neutral

Time (timezone as programmed)

_images/button_axes.png
Axes to display

_images/select_datadirs.png
Data directories:

20150306_W190-PD3GT_34839 Notag Control N
20150310_W190-PD3GT_34839_Notag_Control
20150311_W190-PD3GT_34839_Skinny_Control
20150314_W190PD3GT_34839_Skinny_2neutralBlocks
20150315_W190PD3GT_34839_Notag_Control ;
20150316_W190PD3GT_34839_Skinny_4weighttubes_2Blocks
20150317_W190PD3GT_34839_Skinny_4Floats
20150318_W190PD3GT_34839_Notag_2neutrals
20150320_W190PD3GT_34839_Skinny_dweights
20150323_W190PD3GT_34839_Skinny_4NeutralBlocks
20160418_W190PD3GT_34840_Skinny_2Neutral
20160419_W190PD3GT_34840_Skinny_2Weighted
20160422_W190PD3GT_34840_Skinny_4Floats

20160425 W190PD3GT_34840_Skinny_4Weights

nav.xhtml

 Table of Contents

 		
 Welcome to pylleo’s documentation!

 		
 Guide

 		
 Installation

 		
 Loading data

 		
 Calibration

 		
 Calibrating accelerometer data

 		
 Calibrating propeller data

 		
 Interpolation of sensor data

 		
 Calibration

 		
 Accelerometer

 		
 Collecting calibration data

 		
 Running the calibration software

 		
 Propeller

 		
 Collecting calibration data

 		
 Running the calibration software

 		
 Building the documentation

 		
 napoleon

 		
 Compiling

 		
 Pylleo API documentaiton

 		
 lleoio

 		
 lleocal

_images/t2.png
€

_images/t3.png

_images/select_parameter.png
Parameter to calibrate:

acceleration_x

acceleration_z

_images/t1.png

_images/terminal_poly-success.png
‘Saved polyit for acceleration_z to cal.yaml.

_images/terminal_update-success.png
Updated calibration times for:
acceleration_x/lower

star index: 1230
end index: 9480

_images/t4.png
A8

_images/terminal_poly-error.png
acceleration_x/upper was not found in the
calibration dictionary. Process that parameter and
then try saving the polyfit again.

_images/tool_boxselect.png

_images/tool_boxzoom.png

_images/tool_hover.png

_images/zoom_box-bound.png
Acceleration (count)
3 3
H g

H

Calibrating 20160418_W130PD3GT_34840_Skinny_2Neutral

200 a3 1000
Time (timezone as programmed)

_images/zoom_box-region.png
B
8

Acceleration (count)
]
g 5

H

g

Calibrating 20160418_W 190PD3GT_34840_Skinny_2Neutral

100 120 1an

Time (timezone as programmed)

16n

18

_images/tool_pan.png

_images/tool_wheel.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

